Хотите управлять своим телевизором или акустикой? Как получить ИК команды и отправь их на управляемое устройство?
ИК-приемник и передатчик очень просты в использовании вместе с вашим Arduino. Пример ниже как получить ИК команды и отправлять их. Используя этот пример, вы можете записывать или воспроизводить ir команды с вашего контроллера. Он также получает (записывает) команды и отправляет IR-данные в контроллер, когда их обнаруживает ИК-приемник.
Подключение
Начните с подключения радиомодуля.
IR передатчик | Arduino | Коментарий |
---|---|---|
VCC | +5V | — |
GND | GND | — |
In | D3 | — |
IR приёмник | Arduino | Коментарий |
---|---|---|
VCC | +5V | — |
GND | GND | — |
Out | D8 | — |
Пример
Этот эскиз использует библиотеку Ken Shirriff’s IRRemote. Чтобы установить его в Arduino IDE, выберите меню «Sketch» -> «Include Library» -> «Manage Libraries …». Затем выполните поиск IRRemote по shirif и нажмите кнопку «Установить».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
/** * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2015 Sensnology AB * Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * REVISION HISTORY * Version 1.0 - Changed for MySensors usage by Bart Eversdijk * Version 1.1 - Added option to record manual presets up to 240 * Version 2.0 - Migrated to MySensrors version 2.0 * * DESCRIPTION * * IRrecord: record and play back IR signals as a minimal * An IR detector/demodulator must be connected to the input RECV_PIN. * An IR LED must be connected to the output PWM pin 3. * * * The logic is: * If a V_IR_RECORD is received the node enters in record mode and once a valid IR message has been received * it is stored in EEPROM. The first byte of the V_IR_RECORD message will be used as preset ID * * If a V_IR_SEND the IR message beloning to the preset number of the first message byte is broadcasted * * * Version 0.11 September, 2009 * Copyright 2009 Ken Shirriff * http://arcfn.com */ // Enable debug prints #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_RF24 #define MY_NODE_ID 5 #include <SPI.h> #include <MySensors.h> #include <IRremote.h> // https://github.com/z3t0/Arduino-IRremote/releases // OR install IRRemote via "Sketch" -> "Include Library" -> "Manage Labraries..." // Search for IRRemote b shirif and press the install button // Arduino pin to connect the IR receiver to int RECV_PIN = 8; #define CHILD_ID 2 #define MY_RAWBUF 50 const char * TYPE2STRING[] = { "UNKONWN", "RC5", "RC6", "NEC", "Sony", "Panasonic", "JVC", "SAMSUNG", "Whynter", "AIWA RC T501", "LG", "Sanyo", "Mitsubishi", "Dish", "Sharp", "Denon" }; #define Type2String(x) TYPE2STRING[x < 0 ? 0 : x] #define AddrTxt F(" addres: 0x") #define ValueTxt F(" value: 0x") #define NATxt F(" - not implemented/found") // Raw or unknown codes requires an Arduino with a larger memory like a MEGA and some changes to store in EEPROM (now max 255 bytes) // #define IR_SUPPORT_UNKNOWN_CODES typedef union { struct { decode_type_t type; // The type of code unsigned long value; // The data bits if type is not raw int len; // The length of the code in bits unsigned int address; // Used by Panasonic & Sharp [16-bits] } code; #ifdef IR_SUPPORT_UNKNOWN_CODES struct { decode_type_t type; // The type of code unsigned int codes[MY_RAWBUF]; byte count; // The number of interval samples } raw; #endif } IRCode; #define MAX_STORED_IR_CODES 10 IRCode StoredIRCodes[MAX_STORED_IR_CODES]; IRrecv irrecv(RECV_PIN); IRsend irsend; decode_results ircode; #define NO_PROG_MODE 0xFF byte progModeId = NO_PROG_MODE; // Manual Preset IR values -- these are working demo values // VERA call: luup.call_action("urn:schemas-arduino-cc:serviceId:ArduinoIr1", "SendIrCode", {Index=15}, <device number>) // One can add up to 240 preset codes (if your memory lasts) to see to correct data connect the Arduino with this plug in and // look at the serial monitor while pressing the desired RC button IRCode PresetIRCodes[] = { { { RC5, 0x01, 12, 0 }}, // 11 - RC5 key "1" { { RC5, 0x02, 12, 0 }}, // 12 - RC5 key "2" { { RC5, 0x03, 12, 0 }}, // 13 - RC5 key "3" { { NEC, 0xFF30CF, 32, 0 }}, // 14 - NEC key "1" { { NEC, 0xFF18E7, 32, 0 }}, // 15 - NEC key "2" { { NEC, 0xFF7A85, 32, 0 }}, // 16 - NEC key "3" { { NEC, 0xFF10EF, 32, 0 }}, // 17 - NEC key "4" { { NEC, 0xFF38C7, 32, 0 }}, // 18 - NEC key "5" { { RC6, 0x800F2401, 36, 0 }}, // 19 - RC6 key "1" MicroSoft Mulitmedia RC { { RC6, 0x800F2402, 36, 0 }} // 20 - RC6 key "2" MicroSoft Mulitmedia RC }; #define MAX_PRESET_IR_CODES (sizeof(PresetIRCodes)/sizeof(IRCode)) #define MAX_IR_CODES (MAX_STORED_IR_CODES + MAX_PRESET_IR_CODES) MyMessage msgIrReceive(CHILD_ID, V_IR_RECEIVE); MyMessage msgIrRecord(CHILD_ID, V_IR_RECORD); void setup() { // Tell MYS Controller that we're NOT recording send(msgIrRecord.set(0)); Serial.println(F("Recall EEPROM settings")); recallEeprom(sizeof(StoredIRCodes), (byte *)&StoredIRCodes); // Start the ir receiver irrecv.enableIRIn(); Serial.println(F("Init done...")); } void presentation () { // Send the sketch version information to the gateway and Controller sendSketchInfo("IR Rec/Playback", "2.0"); // Register a sensors to gw. Use binary light for test purposes. present(CHILD_ID, S_IR); } void loop() { if (irrecv.decode(&ircode)) { dump(&ircode); if (progModeId != NO_PROG_MODE) { // If we are in PROG mode (Recording) store the new IR code and end PROG mode if (storeRCCode(progModeId)) { Serial.println(F("Stored ")); // If sucessfull RC decode and storage --> also update the EEPROM storeEeprom(sizeof(StoredIRCodes), (byte *)&StoredIRCodes); progModeId = NO_PROG_MODE; // Tell MYS Controller that we're done recording send(msgIrRecord.set(0)); } } else { // If we are in Playback mode just tell the MYS Controller we did receive an IR code if (ircode.decode_type != UNKNOWN) { if (ircode.value != REPEAT) { // Look if we found a stored preset 0 => not found byte num = lookUpPresetCode(&ircode); if (num) { // Send IR decode result to the MYS Controller Serial.print(F("Found code for preset #")); Serial.println(num); send(msgIrReceive.set(num)); } } } } // Wait a while before receive next IR-code (also block MySensors receiver so it will not interfere with a new message) delay(500); // Start receiving again irrecv.resume(); } } void receive(const MyMessage &message) { //Serial.print(F("New message: ")); //Serial.println(message.type); if (message.type == V_IR_RECORD) { // IR_RECORD V_VAR1 // Get IR record requets for index : paramvalue progModeId = message.getByte() % MAX_STORED_IR_CODES; // Tell MYS Controller that we're now in recording mode send(msgIrRecord.set(1)); Serial.print(F("Record new IR for: ")); Serial.println(progModeId); } if (message.type == V_IR_SEND) { // Send an IR code from offset: paramvalue - no check for legal value Serial.print(F("Send IR preset: ")); byte code = message.getByte() % MAX_IR_CODES; if (code == 0) { code = MAX_IR_CODES; } Serial.print(code); sendRCCode(code); } // Start receiving ir again... irrecv.enableIRIn(); } byte lookUpPresetCode (decode_results *ircode) { // Get rit of the RC5/6 toggle bit when looking up if (ircode->decode_type == RC5) { ircode->value = ircode->value & 0x7FF; } if (ircode->decode_type == RC6) { ircode->value = ircode->value & 0xFFFF7FFF; } for (byte index = 0; index < MAX_STORED_IR_CODES; index++) { if ( StoredIRCodes[index].code.type == ircode->decode_type && StoredIRCodes[index].code.value == ircode->value && StoredIRCodes[index].code.len == ircode->bits) { // The preset number starts with 1 so the last is stored as 0 -> fix this when looking up the correct index return (index == 0) ? MAX_STORED_IR_CODES : index; } } for (byte index = 0; index < MAX_PRESET_IR_CODES; index++) { if ( PresetIRCodes[index].code.type == ircode->decode_type && PresetIRCodes[index].code.value == ircode->value && PresetIRCodes[index].code.len == ircode->bits) { // The preset number starts with 1 so the last is stored as 0 -> fix this when looking up the correct index return ((index == 0) ? MAX_PRESET_IR_CODES : index) + MAX_STORED_IR_CODES; } } // not found so return 0 return 0; } // Stores the code for later playback bool storeRCCode(byte index) { if (ircode.decode_type == UNKNOWN) { #ifdef IR_SUPPORT_UNKNOWN_CODES Serial.println(F("Received unknown code, saving as raw")); // To store raw codes: // Drop first value (gap) // As of v1.3 of IRLib global values are already in microseconds rather than ticks // They have also been adjusted for overreporting/underreporting of marks and spaces byte rawCount = min(ircode.rawlen - 1, MY_RAWBUF); for (int i = 1; i <= rawCount; i++) { StoredIRCodes[index].raw.codes[i - 1] = ircode.rawbuf[i]; // Drop the first value }; return true; #else return false; } #endif if (ircode.value == REPEAT) { // Don't record a NEC repeat value as that's useless. Serial.println(F("repeat; ignoring.")); return false; } // Get rit of the toggle bit when storing RC5/6 if (ircode.decode_type == RC5) { ircode.value = ircode.value & 0x07FF; } if (ircode.decode_type == RC6) { ircode.value = ircode.value & 0xFFFF7FFF; } StoredIRCodes[index].code.type = ircode.decode_type; StoredIRCodes[index].code.value = ircode.value; StoredIRCodes[index].code.address = ircode.address; // Used by Panasonic & Sharp [16-bits] StoredIRCodes[index].code.len = ircode.bits; Serial.print(F(" value: 0x")); Serial.println(ircode.value, HEX); return true; } void sendRCCode(byte index) { IRCode *pIr = ((index <= MAX_STORED_IR_CODES) ? &StoredIRCodes[index % MAX_STORED_IR_CODES] : &PresetIRCodes[index - MAX_STORED_IR_CODES - 1]); #ifdef IR_SUPPORT_UNKNOWN_CODES if(pIr->code.type == UNKNOWN) { // Assume 38 KHz irsend.sendRaw(pIr->raw.codes, pIr->raw.count, 38); Serial.println(F("Sent raw")); return; } #endif Serial.print(F(" - sent ")); Serial.print(Type2String(pIr->code.type)); if (pIr->code.type == RC5) { // For RC5 and RC6 there is a toggle bit for each succesor IR code sent alway toggle this bit, needs to repeat the command 3 times with 100 mS pause pIr->code.value ^= 0x0800; for (byte i=0; i < 3; i++) { if (i > 0) { delay(100); } irsend.sendRC5(pIr->code.value, pIr->code.len); } } else if (pIr->code.type == RC6) { // For RC5 and RC6 there is a toggle bit for each succesor IR code sent alway toggle this bit, needs to repeat the command 3 times with 100 mS pause if (pIr->code.len == 20) { pIr->code.value ^= 0x10000; } for (byte i=0; i < 3; i++) { if (i > 0) { delay(100); } irsend.sendRC6(pIr->code.value, pIr->code.len); } } else if (pIr->code.type == NEC) { irsend.sendNEC(pIr->code.value, pIr->code.len); } else if (pIr->code.type == SONY) { irsend.sendSony(pIr->code.value, pIr->code.len); } else if (pIr->code.type == PANASONIC) { irsend.sendPanasonic(pIr->code.address, pIr->code.value); Serial.print(AddrTxt); Serial.println(pIr->code.address, HEX); } else if (pIr->code.type == JVC) { irsend.sendJVC(pIr->code.value, pIr->code.len, false); } else if (pIr->code.type == SAMSUNG) { irsend.sendSAMSUNG(pIr->code.value, pIr->code.len); } else if (pIr->code.type == WHYNTER) { irsend.sendWhynter(pIr->code.value, pIr->code.len); } else if (pIr->code.type == AIWA_RC_T501) { irsend.sendAiwaRCT501(pIr->code.value); } else if (pIr->code.type == LG || pIr->code.type == SANYO || pIr->code.type == MITSUBISHI) { Serial.println(NATxt); return; } else if (pIr->code.type == DISH) { // need to repeat the command 4 times with 100 mS pause for (byte i=0; i < 4; i++) { if (i > 0) { delay(100); } irsend.sendDISH(pIr->code.value, pIr->code.len); } } else if (pIr->code.type == SHARP) { irsend.sendSharp(pIr->code.address, pIr->code.value); Serial.print(AddrTxt); Serial.println(pIr->code.address, HEX); } else if (pIr->code.type == DENON) { irsend.sendDenon(pIr->code.value, pIr->code.len); } else { // No valid IR type, found it does not make sense to broadcast Serial.println(NATxt); return; } Serial.print(" "); Serial.println(pIr->code.value, HEX); } // Dumps out the decode_results structure. void dump(decode_results *results) { int count = results->rawlen; Serial.print(F("Received : ")); Serial.print(results->decode_type, DEC); Serial.print(F(" ")); Serial.print(Type2String(results->decode_type)); if (results->decode_type == PANASONIC) { Serial.print(AddrTxt); Serial.print(results->address,HEX); Serial.print(ValueTxt); } Serial.print(F(" ")); Serial.print(results->value, HEX); Serial.print(F(" (")); Serial.print(results->bits, DEC); Serial.println(F(" bits)")); if (results->decode_type == UNKNOWN) { Serial.print(F("Raw (")); Serial.print(count, DEC); Serial.print(F("): ")); for (int i = 0; i < count; i++) { if ((i % 2) == 1) { Serial.print(results->rawbuf[i]*USECPERTICK, DEC); } else { Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC); } Serial.print(" "); } Serial.println(""); } } // Store IR record struct in EEPROM void storeEeprom(byte len, byte *buf) { saveState(0, len); for (byte i = 1; i < min(len, 100); i++, buf++) { saveState(i, *buf); } } void recallEeprom(byte len, byte *buf) { if (loadState(0) != len) { Serial.print(F("Corrupt EEPROM preset values and Clear EEPROM")); for (byte i = 1; i < min(len, 100); i++, buf++) { *buf = 0; storeEeprom(len, buf); } return; } for (byte i = 1; i < min(len, 100); i++, buf++) { *buf = loadState(i); } } |